七年级下册数学教学总结
七年级下册数学教学总结(精选13篇)
七年级下册数学教学总结 篇1
轴对称、平移与旋转
一、轴对称:
1、轴对称图形:如果一个图形沿一条直线对折,对折后的两部分能,那么这个图形就是,这条直线就是它的。
2、两个图形成轴对称:如果一个图形沿一条直线折叠后,它能与另一个图形,那么这两个图形成,这条直线就是它们的,折叠时重合的对应点就是
3、轴对称的性质:轴对称(成轴对称的两个)图形的对应线段,对应角
4、垂直平分线的定义:
5、对称轴的画法:先连结一对点,再作所连线段的
6、对称点的画法:过已知点作对称轴的并
二、平移
图形的平移:一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为,它是由移动的和所决定。
平移的特征:经过平移后的图形与原图形对应线段(或在同一直线上)且,对应角,图形的与都没有发生变化,即平移前后的两个图形连结每对对应点所得的线段(或在同一直线上)且。
三、旋转
图形的旋转:把一个图形绕一个沿某个旋转一定的变换,叫做,这个定点叫做。
图形的旋转由、和所决定。
注意:①旋转在旋转过程中保持不动;②旋转分为时针和时针。③旋转一般小于360°。
旋转的特征:图形中每一点都绕着旋转了的`角度,对应点到旋转中心的相等,对应线段,对应角,图形的和都没有发生变化,也就是旋转前后的两个图形。
旋转对称图形:若一个图形绕一定点旋转一定角度(不超过180°)后,能与重合,这种图形就叫。
四、中心对称
中心对称图形:把一个图形绕着某一个点旋转°后,如果能够与重合,那么这个图形叫做图形,这个点就是它的。
成中心对称:把一个图形绕着某一个点旋转°后,如果它能够与重合那么就说这两个图形关于这个点成,这个点叫做。
这两个图形中的对应点叫做关于中心的。
中心对称的性质:关于中心对称的图形,对应点所连线段都经过,而且被对称中心。(中心对称是旋转对称的特殊情况)。
中心对称点的作法——连结和,并延长一倍。
对称中心的求法——方法①:连结一对对应点,再求其;
方法②:连结两对对应点,找他们的。
五、图形的全等
1、全等图形定义:能够完全的两个图形叫做全等图形。
2、图形变换与全等:一个图形经翻折、平移、旋转变换所得到的新图形与全等;全等的两个图形经过上述变换后一定能够。
3、全等多边形:
⑴有关概念:对应顶点、对应边、对应角等。
⑵性质:全等多边形的、相等;
⑶判定:分别对应相等的两个多边形全等。
4、全等三角形:
⑴性质:全等三角形的、相等;
⑵判定:分别对应相等的两个三角形全等。
七年级下册数学教学总结 篇2
一、代数初步知识
1、代数式:用运算符号“+—×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2、列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a。
二、几个重要的代数式(m、n表示整数)
(1)a与b的平方差是:a2—b2;a与b差的平方是:(a—b)2;
(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n—1、n、n+1;
(4)若b>0,则正数是:a2+b,负数是:—a2—b,非负数是:a2,非正数是:—a2。
三、有理数
1、有理数:
(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;π不是有理数;
(2)注意:有理数中,1、0、—1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的.数也有自己的特性;
2、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3、相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a—b+c的相反数是—a+b—c;a—b的相反数是b—a;a+b的相反数是—a—b;
4、绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|
5、有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数—小数>0,小数—大数n)。
2.在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0。
②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义。
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;
七年级下册数学教学总结 篇4
相交线与平行线
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:
同位角F(在两条直线的同一旁,第三条直线的同一侧)
内错角Z(在两条直线内部,位于第三条直线两侧)
同旁内角U(在两条直线内部,位于第三条直线同侧)
4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足
6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c
10、平行线的判定:
①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:
①两直线平行,同位角相等;
②两直线平行,内错角相等;
③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________
14、平移:
①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
15、命题:判断一件事情的语句叫命题。
命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。
命题分为真命题和假命题两种;定理是经过推理证实的真命题。
实数
一、实数的概念及分类
1、实数的分类正有理数有理数零有限小数和无限循环小数
负有理数
正无理数
无理数无限不循环小数
负无理数
整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如7,2等;
π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.…等;
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于
零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
4、实数与数轴上点的关系:
每一个无理数都可以用数轴上的一个点表示出来,
数轴上的点有些表示有理数,有些表示无理数,
实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
三、平方根、算数平方根和立方根
1、平方根
(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根。
(2)开平方的定义:求一个数的平方根的运算,叫做开平方。开平方运算的被开方数必须是非负数才有意义。
3的平方等于9,9的平方根是?
(3)平方与开平方互为逆运算:
(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;
一个负数没有平方根,即负数不能进行开平方运算
(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;
学习方法
注重预习培养自学能力
在预习的时候,应当把定理、定律、公式、常数、特定符号这些内容单独汇集在一起,每抄录一遍,则加深一次印象。上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。预习可以用“一划、二批、三试、四分”的预习方法。
一划:就是圈划知识要点,基本概念。
二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。
三试:就是尝试性地做一些简单的练习,检验自己预习的效果。
四分:就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。
数学概念
正确地理解和形成一个数学概念,必须明确这个数学概念的内涵——对象的“质”的特征,及其外延——对象的“量”的范围。一般来说,数学概念是运用定义的形式来揭露其本质特征的。但在这之前,有一个通过实例、练习及口头描述来理解的阶段。
比如,儿童对自然数,对运算结果——和、差、积、商的理解,就是如此。到小学高年级,开始出现以文字表达一个数学概念,即定义的方式,如分数、比例等。有些数学概念要经过长期的酝酿,最后才以定义的形式表达,如函数、极限等。定义是准确地表达数学概念的方式。
许多数学概念需要用数学符号来表示。如dy表示函数y的微分。数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。许多数学概念的定义就是用数学符号来表达,从而增强了科学性。
许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。有些数学概念可以用图像来表示,比如函数y=x+1的图像。有些数学概念具有几何意义,如函数的微分。数形结合是表达数学概念的又一独特方式,它把数学概念形象化、数量化了。
总之,数学概念是在人类历史发展过程中,逐步形成和发展的。
七年级下册数学教学总结 篇5
本学期我担任七年级179班数学教学工作。由于是新课标教学,无论是教学内容还是教学观念方法方式方面都有新的挑战,于是边学边教、边做边适应地走进新课标。现将一学期来的成与败总结如下:
一、主要工作及取得的成绩:
1、做好课前准备和课后反思工作
面对挑战,我决心立志要争取在教学教研方面有所成就。于是我每天花3小时以上时间认真阅读、挖掘、活用教材,研究教材的重点、难点、关键,研读新课标,明白这节课的新要求,思考如何将新理念融入课堂教学中。认真书写教案,利用网络资源,参考别人的教学教法教学设计,根据本班同学的具体情况制定课时计划。每一课都做好充分的准备。为了使学生易懂易掌握,我还根据教材制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教后反思,并进行阶段总结,即每章一总结,期中、期末一总结。
2、把好上课关,提高课堂教学效率、质量。
新课标的数学课通常采用“问题情境——建立模型——解释、应用与拓展”的模式展开,所有新知识的学习都以相关问题情境的研究作为开始,它们使学生了解与学习这些知识的有效切入点。所以在课堂上我想方设法创设能吸引学生注意的情境。在这一学期,我根据教学内容的实际创设情境,让学生一上课就感兴趣,每节课都有新鲜感。一位老师说过“新课标老师轻松多了”。我原来不同意他的看法,后来我终于明白了,课外要花多些时间精力,而课堂上老师一定要“轻松”,不能太忙。新课标倡导“自主、合作、探究”的学习方式。我在课堂上常为学生提供动手实践、自主探究、合作交流的机会,让他们讨论、思考、表达。由于学生乐学,兴致高昂,通常学生获得的知识都超过教材和我备课的范围。
3、虚心请教同组老师。
在教学上,有疑必问。由于没有新课标教学经验,所以我的教学进度总是落在其他老师之后。我虚心向他们请教每节课的好做法和需要注意什么问题,结合他们的意见和自己的思考结果,总结出每课教学的经验和巧妙的方法。本学期我将自己在备课中想到的好点子以及遇到的问题整理成“教学反思录”。
七年级下册数学教学总结 篇6
第六章实数
【知识点一】实数的分类
1、按定义分类:
2、按性质符号分类:
注:0既不是正数也不是负数。
【知识点二】实数的相关概念
1、相反数
(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数。0的相反数是0。
(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称。
(3)互为相反数的两个数之和等于0。a、b互为相反数a+b=0。
2、绝对值|a|≥0。
3、倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。a、b互为倒数。
4、平方根
(1)如果一个数的平方等于a,这个数就叫做a的平方根。一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。a(a≥0)的平方根记作。
(2)一个正数a的正的平方根,叫做a的算术平方根。a(a≥0)的算术平方根记作。
5、立方根
如果x3=a,那么x叫做a的立方根。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
【知识点三】实数与数轴
数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可。
【知识点四】实数大小的比较
1、对于数轴上的任意两个点,靠右边的点所表示的数较大。
2、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。
3、无理数的比较大小:
【知识点五】实数的运算
1、加法
同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法
几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负。几个数相乘,有一个因数为0,积就为0。
4、除法
除以一个数,等于乘上这个数的倒数。两个数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数都得0。
5、乘方与开方
(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数。
(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方。
(3)零指数与负指数
【知识点六】有效数字和科学记数法
1、有效数字:
一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字。
2、科学记数法:
把一个数用(1≤”、“ 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、在含有未知数的不等式中,使不等式成立的`未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。
3、不等式的性质:
①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。
用字母表示为:如果,那么;如果,那么;
如果,那么;如果,那么。
②性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变。
用字母表示为:如果,那么(或);如果,那么(或);
如果,那么(或);如果,那么(或);
③性质3:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变。
用字母表示为:如果,那么(或);如果,那么(或);
如果,那么(或);如果,那么(或);
4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。
5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。
6、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解(此时也称这个不等式组的解集为空集)。
7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。
第十章数据的收集、整理与描述
知识要点
1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。
2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。
3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。
4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
5、画频数直方图的步骤:①计算数差(值与最小值的差);②确定组距和组数;③列频数分布表;④画频数直方图。
七年级下册数学教学总结 篇7
本学期本人继续担任七年级数学的教学工作。在教学工作中,主要采取边学边教,边做边适应的做法,走进新课标。现将一学期成功与不足总结如下:
一、主要工作及主要成绩
1、面对新课程改革的要求,决心立志在新学期教学工作中争取教学方面有所突破。因此,我认真仔细阅读、挖掘、活用教材,研究教材的重点、难点,熟悉教材各章节重要环节,用心研读新课程标准。弄懂每一节课的新要求,思考如何将新课程理念融入到教学中,认真备好和写好每一节课的教案,向有经验的教师请教,根据七年级学生的实际情况制定出具体的教学计划。每一节课都要做好充分准备。为了使学生学得易懂易掌握,我还努力发掘学生的兴趣特点,采取多种教学手段,吸引学生上课的注意力,收到了良好的教学效果。课后及时对所上的课可作出小结,同时还认真做好反思,并对每一个单元进行阶段性评价。
2、把好上课关,提高课堂教学效率
新课标的数学通常采用“问题情境———建立模型——解释、应用与拓展”的模式展开,所有新知识的学习都以相关问题情境的研究作为开始,它们使学生了解与学习这些知识的有效切入点。所以在课堂上我想方设法创设能吸引学生注意力的情景。尽可能让学生一上课就感兴趣,每节课都有新想法。新课标倡导“自主、合作、探究”的学习方式我在课堂上积极为学生提供动手实践,自主探究与合作交流的机会,让他们讨论、思考、表达。由于学生兴趣,学生很容易接受所授知识。
3、老师之间互相促进提高
注意与其他老师的互相沟通,总结出每一单元好的教法和要注意的问题,结合他们的意见和自己的思考结果,归纳每一单元教学的经验和巧妙方法。然后进行反思
二、存在问题和今后努力的方向
1、新课标学习和钻研还要加强。
2、课堂教学设计、研究、效果方面还要加以改进。
3、多媒体技术在课堂教学中的使用还有待提高。
总之,教学是一个教育学的不断结合,不断促进,不断完善的过程,在实践中去检验自己的教学方法,在学生反馈中发现不足。在今后的教学中加以改进,这才会使教学的教法更有实用性,教育效果才会更明显。
七年级下册数学教学总结 篇8
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的`一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
五、同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n = am﹒an。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
六、幂的乘方
1、幂的乘方是指几个相同的'幂相乘。(am)n表示n个am相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。
3、此法则也可以逆用,即:amn =(am)n=(an)m。
七、积的乘方
1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
3、此法则也可以逆用,即:anbn=(ab)n。
八、三种“幂的运算法则”异同点
1、共同点:
(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。
2、不同点:
(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
九、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am—n(a≠0)。
2、此法则也可以逆用,即:am—n = am÷an(a≠0)。
十、零指数幂
1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
十一、负指数幂
1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
十二、整式的乘法
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。
3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
(三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。
十三、平方差公式
1、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的平方之差。
2、平方差公式中的a、b可以是单项式,也可以是多项式。
3、平方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
(a+b)(a—b)的形式,然后看a2与b2是否容易计算。
学数学的方法有哪些
1注重打好数学基础
对于学生来说,想要学好数学,那么一定从小打好基础,因为数学是一个非常注重基础,一环扣一环的学科,之前知识上的欠缺也会影响后续的学习,所以对于数学不好的学生来说首先应该做的就是打基础,把自己欠缺的基础都补上,才能更好的进行后续的学习。
2整理笔记
关于数学的笔记我有两本,一个是我们老师总结的一些方法和技巧,一些公式的记忆以及法则概念之类的(这个要好好记!做题的时候经常用到!没有公式做题简直是… )另一本是关于一些好题难题错题典型题,把这些题从纸上剪下来贴到本子上再做一遍,到中考前我把这个错题本又全部重新做了一遍(当然,这个由于太懒,有的题有点三天打渔两天晒网 )
怎么样才能打好初一数学基础
第一,重视初一数学公式。有很多同学数学学不好就是因为对概念和公式不够重视,具体的表现为对初一数学概念的理解只是停留在表明,不去挖掘引申的含义,对数学概念的特殊情况不明白。还有对数学概念和公式有的学生只是死记硬背,初一学生缺乏对概念的理解。
还有一部分初一同学不重视对数学公式的记忆。其实记忆是理解的基础。我们设想如果你不能将数学公式烂熟于心,那么又怎么能够在数学题目中熟练的应用呢?
第二,就是总结那些相似的数学题目。当我们养成了总结归纳的习惯,那么初一的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。
同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了初一数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果初一学生不会做到这一点那么久而久之,不会的数学题目还是不会。
七年级下册数学教学总结 篇9
第一章
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。(三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。平方差公式.两数和与这两数差的积,等于它们的平方之差完全平方式:.
第二章一、余角与补角
1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。
4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等二、对顶角
1、两条直线相交成四个角,其中不相邻的两个角是对顶角。
2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3、对顶角的性质:对顶角相等。
4、同位角、内错角、同旁内角、平行线的判定方法
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行
平行线的性质
1、两直线平行,同位角相等。
2、两直线平行,内错角相等。
3、两直线平行,同旁内角互补
七年级下册数学教学总结 篇10
本学期,我仍然担任初一X班的数学教学工作,这两个班的数学基础很不相同,针对他们的不同的基础我分别展开不同的教育,我从各方面严格要求自己,勤勤恳恳,兢兢业业,出满勤,干满点,身先士卒,为人师表。使教学工作有计划,有组织,有步骤地开展。立足现在,放眼未来,为使今后的工作取得更大的进步,现对本学期教学工作作出总结,以发扬优点,克服不足,总结教训,促进教育教学工作更上一层楼。
一、抓思想教育,提高学生的数学学习兴趣
狠抓思想教育和学法执导,为学习提供持久的动力。本期以来,经常利用课前及课余、自习时间个别谈心对学生进行理想前途及学习目的教育,教育学生树立远大的理想和抱负,使学生有一个较为端正的学习态度和较大的学习动力。因此数学课学生比较重视该科,上课的时候比较认真,大部分学生都能专心听讲,课后也能认真完成作业。对少数学习困难的学生,给予特别的关注,我找来差生,了解原因,有些是不感兴趣,我就跟他们讲学习数学的重要性,跟他们讲一些有趣的故事,提高他们的兴趣;有些是没有努力去学,我提出批评以后再加以鼓励,并为他们定下学习目标,时时督促他们,帮助他们;一些学生基础太差,抱着破罐子破摔的态度,或过分自卑,考试怯场等,我就帮助他们找出适合自己的学习方法,分析原因,鼓励他们不要害怕失败,要给自己信心,并且要在平时多读多练,多问几个为什么。同时,一有进步,即使很小,我也及时地表扬他们。经过一个学期,绝大部分的同学都养成了勤学苦练的习惯,形成了良好的学风。另外,我狠抓学风,在班级里提倡一种认真、求实的学风,严厉批评抄袭作业的行为。与此同时,为了提高同学的学习积极性,开展了学习竞赛活动,在学生中兴起一种你追我赶的学习风气。学习成绩进步较大。
二、做好常规教学,认真做好教学五环节
积极参加每周四的数学教研活动,发挥集体智慧,弥补自己的不足,认真备课,不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,积极创设各种教学情景,提高课堂教学效率。课后及时对该课作出总结,写好教学后记,并认真搜集每课的知识要点考点,易错点。
认真创设教学情景,提高课堂教学效率。努力上好每一节课,课前认真作好组织教学工作,积极创设教学情景调动学生的积极性,把课堂交给学生,作为师生合作的学堂,课堂上教师把解决问题的思路、方法、切入点、上堂演板、解决问题的过程都交给学生,学生能说的教师不说,学生会做的教师不讲。让学生自主学习、合作交流,加强师生交流,充分体发挥教师的主导作用和学生的主体作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上对学生存在的共性问题和易混点、易错点老师做必要的点播,讲得尽量少、尽量精。同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,特别要关注学困生的学习要求,实行班级内分层教学。从学习目标,教学过程,课堂评价,布置作业进行分层。让各个层次的学生都得到提高。
加强批改作业,认真进行纠错。布置作业做到有针对性,有层次性。为了精选作业,对手头各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业格式作出具体的要求:格式规范,书写认真,步骤完整,答案准确。尤其强调书写的规范,书写干净,不乱涂乱画。养成良好的规范作业的习惯。最大限度的减少考试因不规范而影响成绩。对作业全批全改,及时批改,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。为了落实好纠错的效果,每个学生都建立纠错本,对平时作业,考试中出现的错误,要求弄清错误原因,认真补错。
做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们思想问题,让他们意识到学习的重要性和必要性,没有知识将来到社会上就无法生存,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自己的需要。
在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。为了把学困难生转化进一步搞好落实,在班级内部开展“一帮一”同进步活动,班级前30名同学帮助对应的后30名同学,比一比通过半学期的努力,谁和自己帮助的同学进步幅度大。还教育优秀同学,不要认为帮助后进生影响自己的学习,其实可以进一步促进和巩固自己的学习,使自己学的更深刻理解得更透彻,使优生帮助差生更加积极主动。同时对后进生的转化还要坚持“多表扬,少批评”的原则,发现他们的闪光点要及时进行表扬和鼓励,使他们增加自信,产生前进的动力,逐渐摆脱后进,进入学优生的行列。
三、一份耕耘、一份收获
一份耕耘,一份收获,本学期的教育取得了较好的成绩。学生的学习氛围较浓,学习兴趣较高,课代表认真负责,小组组长严把作业关,期中考试两个班的成绩都很优秀。学习任务顺利完成,学生基本掌握了本学期的数学知识。
四、存在的不足
存在的不足是,学生的知识结构还不是很完整,个别差生成绩仍然很差,基本处于自然境界,学生学习知识学得有点死。在下期的教育教学工作中,一定要认真总结经验,克服存在的不足,争取下期的教育教学工作取得更大的进步。
七年级下册数学教学总结 篇11
本着回顾过去、展望未来的原则,现对七年级下学期数学教学工作进行总结。这既是对过去数学教学工作的回顾、总结和评价,同时也是为了从中总结成功的经验,找出失败的原因。对失败的作法加以分析和改进,以提高今后的教学水平。下面谈谈自己在本学期教学中的几点做法与思考,权当教学工作总结吧。
一、端正态度,提高思想认识水平。
认真执行党的教育方针、政策,学习《初中数学新课程改革标准》,坚定不移的实施新课程改革,钻研新课程改革下数学教学方法,提高自己的业务能力和教学水平。做到热爱教育事业,热爱自己的学生,认真对待教学工作中的每一个细节,虚心向其他教师请教教学中出现的问题,结合教材内容、本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,有计划,有组织,有步骤地开展教学工作。
二、澄清底子,制定针对性的教学计划。
开学之初,我首先对七年级上册数学期末考试试卷进行了分析,把试卷中暴露出的问题进行归类,作好记录,并在新学期的教学计划中提出相应的解决办法。根据班级的实际情况重新定位,制定七年级下册的教学目标。
针对学生普遍基础差,两极分化现象严重,我对学生按成绩的发展潜力进行分类,再按照成绩好、中、差的方式分配互助学习小组。要求成绩好的学生对中等生和后进生进行适当的辅导,以优带良,以优促后。对于部分有能力但学习态度不端正的学生另行造册,拟定矫正措施。
三、精心设计教学情境,营造良好的教学气氛。
课堂教学是教学过程中最为重要的一个环节,要取得较好的课堂教学效果,必须营造一种轻松的、积极的、向上的气氛,激发学生的求知欲。所以在课前的准备中,我都会考虑到如何给学生营造一种轻松愉快的环境,以此调动学生的积极性。
根据教学内容,我设计了一系列的生活问题、数学趣题,搜集了一些数学家的故事,通过形式多样化的趣味情境导入,调起了学生的胃口,激发了学习兴趣,提高了听课的积极性,促进探究的主观能动性,增强知识掌握的牢固性,培养了学生探究思维的能力。同时,也提高了课堂教学的效率。
四、搞好分层指导,加强课后辅导。
俗话说,“五个手指三长两短”。每个学生的能力和基础都是不一样的,这是客观存在的事实。因此在教学中我很注意给不同类型学生施加不同的压力,给他们分配不同的'目标任务。对于优等生主要是加大训练的难度,以拓展他们的思维能力。对中等生则主要是提供不同的题型,适当增加难度,训练他们的思维,拓展他们的见识,以提高解题的能力和技巧。对于后进生,我主要是对他们进行基础知识辅导,帮助他们树立学习信心,激发他们的求知欲望。
五、反思存在的问题,总结经验教训。
虽然在本学期的数学教学中,我付出了很多时间和精力,但还是存在一些问题。首先在解决中下学生的解题能力上突破不大;其次是在提高中等生解难题的能力上效果并没达到预期目标,结果造成期末考试的合格率进步甚微;三是少数后进生的学习积极性并没有真正调动起来,造成低分率较高,影响了班级人均分;四是在对试卷分析时并没有针对部分较难的题型进行多重练习,造成考试中出现一些不必要的丢分现象。
本学期全面贯彻落实教育方针,以人为本,以着眼于学生的终身发展为目标,全面深入贯彻落实素质教育,构建高效课堂。紧紧围绕“教学效益年活动”、“读书活动”的精神探索性的开展工作。热爱教育事业,规范“自成教育”体系,配合学校做好“数字化教学”工作,积极探索“三疑三探”课堂教学模式,以人为本,关爱学生,平等对待学生,始终坚持教育的全面性和终身性发展,教学中更加关注学生分析理解题目的方法和技巧,以素质教育为本,以发展他们的能力素质为己任。为今后更好高效的工作,现将本学期教学工作做以下总结:
七年级下册数学教学总结 篇12
目录
第七章 平面图形的认识(二) 1
第八章 幂的运算 2
第九章 整式的乘法与因式分解 3
第十章 二元一次方程组 4
第十一章 一元一次不等式 4
第十二章 证明 9
第七章 平面图形的认识(二)
一、知识点:
1、“三线八角”
① 如何由线找角:一看线,二看型。
同位角是“F”型;
内错角是“Z”型;
同旁内角是“U”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:
如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:
如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:
判定定理 性质定理
条件 结论 条件 结论
同位角相等 两直线平行 两直线平行 同位角相等
内错角相等 两直线平行 两直线平行 内错角相等
同旁内角互补 两直线平行 两直线平行 同旁内角互补
4、图形平移的性质:
图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:
三角形的任意两边之和大于第三边;
三角形的任意两边之差小于第三边。
若三角形的三边分别为a、b、c,
则。
6、三角形中的主要线段:
三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:
三角形的3个内角的和等于180°;
直角三角形的两个锐角互余;
三角形的一个外角等于与它不相邻的两个内角的和;
三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:
n边形的内角和等于(n-2)180°;
任意多边形的外角和等于360°。
第八章 幂的运算
幂(power)指乘方运算的结果。an指将a自乘n次(n个a相乘)。把an看作乘方的结果,叫做a的n次幂。
对于任意底数a,b,当m,n为正整数时,有
aman=am+n (同底数幂相乘,底数不变,指数相加)
am÷an=am-n (同底数幂相除,底数不变,指数相减)
(am)n=amn (幂的乘方,底数不变,指数相乘)
(ab)n=anan (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)
a0=1(a≠0) (任何不等于0的数的0次幂等于1)
a-n=1/an (a≠0) (任何不等于0 的数的-n次幂等于这个数的n次幂的倒数)
科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|”,那么变化后将成为“”、“
七年级下册数学教学总结相关文章:
七年级下册数学教学总结





上一篇:我记忆中难忘的春节演讲稿
下一篇:幼师个人教学总结参考2025